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Abstract

Let G be a compact connected Lie group which is equipped with a bi-invariant Riemannian metric. Let m(x, y) = xy be the
multiplication operator. We show the associated fibration m : G × G → G is a Riemannian submersion with totally geodesic fibers
and we study the spectral geometry of this submersion. We show that the pull-backs of eigenforms on the base have finite Fourier
series on the total space and we give examples where arbitrarily many Fourier coefficients can be non-zero. We give necessary and
sufficient conditions for the pull-back of a form on the base to be harmonic on the total space.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The spectral geometry of Riemannian manifolds has been studied extensively; compact Lie groups play a central
role in this investigation. For example, work of Schueth [13] shows that there are non-trivial isospectral families of left
invariant metrics on compact Lie groups, although any such family which includes a bi-invariant metric is necessarily
trivial; this work has been extended by Proctor [11]. Riemannian submersions of Lie groups with totally geodesic
fibers have been studied by Ranjan [12]. We refer the reader to [3] for a further discussion of the spectral geometry of
Riemannian submersions.

There are many instances in the physics literature where non-bijective canonical transformations (i.e. Riemannian
submersions) have been investigated. Boiteux [1] studied the Coulomb potential in two and three dimensions
and noted that “in quantum mechanics, those transformations connect operators with different spectra which as
such cannot be deduced from one another by unitary transformations”. Recent work by Kibler [7] discusses the
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Kustaanheimo–Steiffel transformation in classical mechanics for regularizing the Kepler problem; this is a non-
bijective canonical transformation which is quadratic and based on the Hopf fibration. We also refer the reader to
Lambert and Kibler [8] for related work and for a more extensive review of the classical literature in this subject than
is possible here.

In this paper, we shall study the spectral geometry of the multiplication map m : G × G → G where G is a
compact Lie group. If we embed G in a matrix group, then m defines a non-bijective canonical transformation which
is quadratic. We shall adopt the following notational conventions. Let ∆p

M := dδ + δd be the Laplace–Beltrami
operator acting on the space of smooth p forms C∞(Λp(M)) on a compact smooth closed Riemannian manifold M
of dimension m. We summarize briefly the following well known facts which we shall need, see, for example [2] for
further details. Denote the distinct eigenvalues and associated eigenspaces by:

Spec(∆p
M ) = {0 = λ0 < λ1 < · · · < λn < · · ·},

Eλ(∆
p
M ) =

{
φ ∈ C∞(Λp(M)) : ∆p

Mφ = λφ
}
.

The spectral multiplicities dim{Eλ(∆
p
M )} are all finite. Furthermore there is a complete orthonormal decomposition

L2(Λp(M)) = ⊕

λ∈Spec(∆p
M )

Eλ(∆
p
M ).

Let G be a compact connected Lie group which is equipped with a bi-invariant Riemannian metric ds2
G . Normalize

the product metric on G × G by taking

ds2
G×G = 2(ds2

G ⊕ ds2
G). (1.a)

The situation on 0-forms is particularly simple; we shall show in Section 2 that the pull-back of an eigenfunction
is again an eigenfunction with the same eigenvalue:

Theorem 1.1. Let ds2
G be a bi-invariant metric on a compact Lie group G. Let ds2

G×G = 2(ds2
G ⊕ ds2

G). Then the
multiplication map m : G × G → G is a Riemannian submersion with totally geodesic fibers and m∗

{Eλ(∆0
G)} ⊂

Eλ(∆0
G×G).

Let πλ be orthogonal projection on Eλ(∆
p
M ). If φ ∈ C∞(Λp(M)), let µ(φ) be the number of eigenvalues λ so that

πλφ 6= 0; this is the number of distinct eigenvalues which are involved in the Fourier series decomposition of φ. We
shall use the Peter–Weyl theorem in Section 3 to show that:

Theorem 1.2. Let ds2
G be a bi-invariant metric on a compact Lie group G. Let ds2

G×G = 2(ds2
G ⊕ ds2

G). If

φ ∈ Eλ(∆
p
G), then µ(m∗φ) ≤

(
2 dim{G}

p

)
dim{Eλ(∆

p
G)}.

The geometry of left invariant 1-forms plays a central role in our discussions. The following result will be
established in Section 4:

Theorem 1.3. Let ds2
G be a bi-invariant metric on a compact Lie group G. Let ds2

G×G = 2(ds2
G ⊕ ds2

G). Let
φ ∈ Eλ(∆1

G) be left invariant. Then one may decompose m∗φ = Φ1 + Φ2 where 0 6= Φ1 ∈ E 3
2λ
(∆1

G×G) and

0 6= Φ2 ∈ E 1
2λ
(∆1

G×G).

Theorem 1.2 shows that the pull-back of an eigenform has a finite Fourier series. In Section 5, we will use
Theorem 1.3 to establish following result which shows that the number of eigenvalues involved in the Fourier
decomposition of m∗φ can be arbitrarily large:

Theorem 1.4. Let p ≥ 1 and let µ0 ∈ N be given. There exists a bi-invariant metric on a compact Lie group G, there
exists λ, and there exists 0 6= φ ∈ Eλ(∆

p
G) so that µ(m∗φ) = µ0.

The Hodge–DeRham theorem identifies the nth cohomology group Hn(M; C) of M with the space of harmonic
n-forms E0(∆n

M ) if M is a compact Riemannian manifold. Thus the eigenvalue 0 has a particular significance. Let
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Λ(E0(∆1
G)) be the subring generated over C by the harmonic 1-forms; one has that φ ∈ Λn(E0(∆1

G)) if and only if
one can express:

φ =

∑
|I |=n

aIφ
i1 ∧ · · · ∧ φin where aI ∈ C and φi

∈ E0(∆1
G).

Theorem 1.5. Let ds2
G be a bi-invariant metric on a compact Lie group G. Let ds2

G×G = 2(ds2
G ⊕ ds2

G). Assume G
connected.

(1) Λn(E0(∆1
G)) ⊂ E0(∆n

G).

(2) φ ∈ Λn(E0(∆1
G)) if and only if m∗φ ∈ E0(∆n

G×G).
(3) Let G be simply connected. If φ ∈ E0(∆n

G) for n > 0, m∗φ 6∈ E0(∆n
G×G).

One can consider more generally the situation where G and G × G are endowed with arbitrary left invariant
metrics ds2

G and ds2
G×G where there is no a priori relation assumed between these metrics. The question of when this

is a Riemannian submersion is an interesting one and will be studied in more detail in a subsequent paper. For the
moment, however, we content ourselves in Section 7 by generalizing Theorem 1.2 to this setting:

Theorem 1.6. Let G and G × G be equipped with left invariant metrics ds2
G and ds2

G×G . If φ ∈ Eλ(∆
p
G), then

µ(m∗φ) ≤

(
2 dim{G}

p

)2 (
dim{G}

p

)2

dim{Eλ(∆
p
G)}

4.

We remark that this bound is much worse than the bound given in Theorem 1.2; at two different points in the proof
we shall need to pass from a left invariant subspace to a bi-invariant subspace and this greatly increases estimate on
the dimension.

2. The geometry of the multiplication map m

Let π : X → Y be a surjective smooth map where X and Y are compact Riemannian manifolds. We suppose that
π is a submersion, i.e. that the map π∗ : Tx X → Tπx Y is surjective for every x ∈ X , and let V (resp. H) be the
associated vertical (resp. horizontal) distribution:

V := {ξ ∈ T X : π∗ξ = 0} and H := V⊥.

We say that π is a Riemannian submersion if π∗ : Hx → T Yπx is an isometry ∀x .
The following example is instructive. Let m(u, v) = u + v define a linear map from R2n

→ Rn . Take the standard
Euclidean metric on Rn . We may identify TxR2n

= R2n and TyRn
= Rn . Under this identification,

V = Span
ξ∈Rn

{(
1
2
ξ,−

1
2
ξ

)}
and H = Span

ξ∈Rn

{(
1
2
ξ,

1
2
ξ

)}
.

We have m∗(
1
2ξ,

1
2ξ) = ξ . Thus if ξ is a unit vector in TyRn , we need that ( 1

2ξ,
1
2ξ) is a unit vector in TxR2n . This

motivates the factor of 2 which appears in Eq. (1.a) since the ordinary Euclidean length of ( 1
2ξ,

1
2ξ) would be 1

2 and
not 1. With this normalization, m becomes a Riemannian submersion.

More generally, let G be a Lie group which is equipped with a bi-invariant Riemannian metric ds2
G . Let

m(x, y) = xy be the multiplication operator from G × G → G. Let {eL
i } (resp. {eR

i }) be an orthonormal frame
of left (resp. right) invariant vector fields on G. We assume eL

i (1) = eR
i (1) = ei where 1 ∈ G is the unit of the group

and where {ei } is an orthonormal basis for T1(G). Let exp be the exponential map in the group. Then the flows Ξ L
i

and Ξ R
i of these vector fields are:

Ξ L
i : (g, t) → g exp(tei ) and Ξ R

i : (g, t) → exp(tei )g.
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The multiplication map m defines a smooth surjective map m : G × G → G. Consider the following curves in
G × G with initial position (g1, g2):

γ
g1,g2
i : t →

(
g1 exp

(
1
2

tei

)
, exp

(
−

1
2

tei

)
g2

)
,

%
g1,g2
i : t →

(
g1 exp

(
1
2

tei

)
, exp

(
1
2

tei

)
g2

)
,

τ
g1,g2
i : t → (exp(tei )g1, g2).

We may identify T (G × G) = T G ⊕ T G. Because mτ g1,g2
i : t → exp(tei )g1g2,

m∗{τ̇
g1,g2
i (0)} = eR

i (m(g1, g2)).

Consequently m∗ is surjective so m is a submersion. As mγ g1,g2
i : t → g1g2 is independent of t , one has

γ̇i =
1
2 (e

L
i ,−eR

i ) ∈ ker{m∗}. It now follows that

V := ker{m∗} = Span
{

Vi :=
1
2
(eL

i ,−eR
i )

}
,

H := ker{m∗}
⊥

= Span
{

Hi :=
1
2
(eL

i , eR
i )

}
.

(2.a)

Let Lg and Rg denote left and right multiplication in the group. As %̇i = Hi ,

m∗(g1,g2){Hi (g1, g2)} = (Lg1)∗(Rg2)∗ei . (2.b)

Since Lg1 and Rg2 are isometries, it follows that {m∗ Hi (g1, g2)} is an orthonormal basis for Tg1g2 G. We have
defined ds2

G×G = 2(ds2
G ⊕ ds2

G). We show that m is a Riemannian submersion by computing:

(Hi , H j )G×G = 2
1
4

{
(eL

i , eL
j )G + (eR

i , eR
j )G

}
= δi j ,

(Hi , V j )G×G = 2
1
4

{
(eL

i , eL
j )G − (eR

i , eR
j )G

}
= 0,

(Vi , V j )G×G = 2
1
4

{
(eL

i , eL
j )G + (eR

i , eR
j )G

}
= δi j .

Fix h ∈ G. The map Th : (g1, g2) → (hg−1
2 , g−1

1 h) is an isometry G × G. Clearly Th(g1, g2) = (g1, g2) if and
only if g1 = hg−1

2 and g2 = g−1
1 h or equivalently if g1g2 = h. Thus the fixed point set of T is m−1(h). Since the

fixed point set of an isometry consists of the disjoint union of totally geodesic submanifolds, the fibers of m, which
are connected submanifolds diffeomorphic to G, are totally geodesic. It now follows that the mean curvature covector
vanishes. Theorem 4.3.1 of [3] shows m∗∆0

G = ∆0
G×Gm∗. This completes the proof of Theorem 1.1.

3. The Peter–Weyl theorem

We recall the classical Peter–Weyl theorem; for further details see, for example, [5,6]. Let G be a compact Lie
group which is equipped with a bi-invariant metric; assume the metric is normalized so G has unit volume. If ρ is a
smooth left representation of G on a finite dimensional complex vector space V , then by averaging an arbitrary inner
product on V over the group we can always choose an inner product on V which is preserved by ρ. Thus any such
representation is unitarizable. Let Irr(G) be the set of isomorphism classes of finite dimensional irreducible unitary
left representations of G. We can decompose any finite dimensional left representation space V as a direct sum of
irreducibles:

V = ⊕
ρ∈Irr(G)

nρVρ ;

the multiplicities nρ are independent of the particular decomposition chosen and are non-zero for only finitely many ρ.
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Let {ei } be an orthonormal basis for Vρ where ρ ∈ Irr(G). We may expand ρ(g)ei =
∑

j ρi j (g)e j ; the functions
ρi j ∈ C∞(G) are said to be the matrix coefficients of ρ. We let

Hρ := Span
1≤i, j≤dim(ρ)

{ρi j } ⊂ L2(G).

It is easily verified that Hρ is invariant under both the left and right group action and that Hρ is independent of the
particular orthonormal basis chosen for Vρ ; isomorphic representations determine the same space. Furthermore, as a
left representation space for G, Hρ is isomorphic to dim(ρ) copies of the original representation ρ.

If V is any finite dimensional subspace of L2(G)which is left invariant under G and which is abstractly isomorphic
to Vρ as a representation space, then one has V ⊂ Hρ ; to put it another way, Hρ contains all the left submodules of
L2(G) which are isomorphic to Vρ . Furthermore, we have a complete orthogonal direct sum decomposition

L2(G) = ⊕
ρ∈Irr(G)

Hρ = ⊕
ρ∈Irr(G)

dim(ρ) · Vρ .

This means that {ρi j }1≤i, j≤dim(ρ),ρ∈Irr(G) is a complete orthonormal basis for L2(G).
More generally, let {φi

L} be an orthonormal basis for the space of left invariant 1-forms. If one has that I = {1 ≤

i1 < · · · < i p ≤ dim(G)} is a multi-index, let Φ I
L := φ

i1
L ∧ · · · ∧ φ

i p
L ; the Φ I

L are an orthonormal basis for the space
of left invariant p-forms and as a left representation space for G one has:

L2(Λp(G)) = ⊕
ρ∈Irr(G),|I |=p

Hρ ⊗ Φ I
L = ⊕

ρ∈Irr(G)

(
dim{G}

p

)
dim(Vρ)Vρ . (3.a)

The subspace H p
ρ := ⊕|I |=p Hρ · Φ I

L is a bi-invariant G submodule of L2(Λp(G)) which contain every left
subrepresentation of G on L2(Λp(G)) isomorphic to Vρ .

Let πλ be orthogonal projection from L2(Λp(G)) to Eλ(∆
p
G) and let µ(φ) be the number of eigenvalues λ so

πλ(φ) 6= 0. We prepare for the proof of Theorem 1.2 by establishing:

Lemma 3.1. Let H ⊂ L2(Λp(G)) be invariant under the action of Lg for all g ∈ G. If φ ∈ H, then µ(φ) ≤(
dim{G}

p

)
dim{H}.

Proof. Clearly πλH is non-trivial if and only if there exists ρ ∈ Irr(G) so that the multiplicities satisfy:

nH (ρ) > 0 and nEλ(∆
p
G )
(ρ) > 0.

Note that only a finite number of representations appear in H and only a finite number of eigenspaces involve any
given representation. By Eq. (3.a),

µ(φ) ≤

∑
ρ∈Irr(G):nρ (H)6=0

 ∑
λ:nρ (Eλ(∆

p
G ))6=0

1


≤

∑
ρ∈Irr(G):nρ (H)6=0

{(
dim{G}

p

)
dim{Vρ}

}
≤

(
dim{G}

p

)
dim{H}. �

We can now establish Theorem 1.2. It is convenient to introduce m̃(g, h) = gh−1. Let H = Eλ(∆
p
G). Since the

metric is bi-invariant, the Laplacian and hence the eigenspaces are preserved by both left and right multiplication. Let
H̃ := m̃∗ H . We compute:

m̃{LG×G
g,h (a1, a2)} = m̃(ga1, ha2) = ga1a−1

2 h−1
= LG

g RG
h−1 m̃(a1, a2),

{LG×G
g,h }

∗m̃∗
= m̃∗(RG

h−1)
∗(LG

g )
∗.

Since H is invariant under both the left and right actions of G, H̃ is invariant under the left action of G × G. We
replace the group in question by G × G and apply Lemma 3.1 to estimate µ(m̃∗φ). Since the metric on G × G is
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bi-invariant, ψ(x, y) := (x, y−1) is an isometry of G × G. We have

a1a2 = m(a1, a2) = a1(a−1
2 )−1

= m̃(ψ(a1, a2))

and thus m∗
= ψ∗m̃∗. Consequently µ(m∗φ) = µ(ψ∗m̃∗φ) = µ(m̃∗φ). �

4. Left invariant 1-forms

Let Λp
L(G) be the finite dimensional vector space of left invariant p-forms on G. Define the left and right actions

of G on G × G by:

L1,g : (x, y) → (gx, y), L2,g : (x, y) → (x, gy),

R1,g : (x, y) → (xg, y), R2,g : (x, y) → (x, yg).
(4.a)

Consider the following subspaces:

Λ̃p(G × G) = {θ ∈ C∞(Λp(G × G)) : L∗

1,gθ = θ, R∗

1,g−1 L∗

2,gθ = θ ∀g ∈ G}.

Lemma 4.1. Adopt the notation established above. Then:

(1) dG×G{Λ̃p(G × G)} ⊂ Λ̃p+1(G × G), δG×G{Λ̃p+1(G × G)} ⊂ Λ̃p(G × G), ∆p
G×G{Λ̃p(G × G)} ⊂ Λ̃p(G × G),

and Λ̃p(G × G) ∧ Λ̃q(G × G) ⊂ Λ̃p+q(G × G).
(2) The map θ → θ(1) is an isomorphism from Λ̃p(G × G) to Λp(G × G)(1).
(3) m∗

{Λp
L(G)} ⊂ Λ̃p(G × G).

Proof. Assertion (1) follows since the maps of Eq. (4.a) are isometries and thus the pull-backs defined by these maps
commute with d , δ, ∆, and ∧. To prove Assertion (2), define an action A of G × G on G × G by setting:

Ag,h : (a, b) → (gah−1, hb)

this is a fixed point free transitive isometric group action since

Ag1,h1 Ag2,h2 = Ag1g2,h1h2 .

This exhibits G × G as a homogeneous space. We have furthermore that:

m(ga, b) = gm(a, b), m ◦ L1,g = Lg ◦ m, m∗L∗
g = L∗

1,gm∗,

m(ag−1, gb) = m(a, b), m ◦ L2,g R1,g−1 = m, R∗

1,g−1 L∗

2,gm∗
= m∗.

Suppose that φ ∈ Λp
L(G). Then L∗

gφ = φ for all g. Consequently

L∗

1,gm∗φ = m∗L∗
gφ = m∗φ and R∗

1,g−1 L∗

2,gm∗φ = m∗φ.

Assertion (3) follows. �

Fix an orthonormal frame {φi
L} for Λ1

L(G) so that

∆1
G{φi

L} = λiφ
i
L . (4.b)

Since right and left multiplication commute, right multiplication preserves Λ1
L(G). Thus we may decompose

R∗
gφ

i
L =

∑
j

ξi j (g)φ
j
L . (4.c)

Since Rg Rh = Rhg and since R1 = id, we have

ξi j (g)ξ jk(h) = ξik(hg) and ξi j (1) = δi j .

We may decompose Λ1(G × G) = Λ1(G)⊕ Λ1(G). Define

Φi
1(u, v) =

∑
j

ξi j (v)φ
j
L(u)⊕ 0 and Φi

2(u, v) = 0 ⊕ φi
L(v).
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Lemma 4.2. Adopt the notation established above.

(1) {Φi
1,Φ

i
2} is a basis for Λ̃1(G × G).

(2) m∗φi
L = Φi

1 + Φi
2.

(3) ∆1
G×GΦi

1 =
3
2λiΦi

1 and ∆1
G×GΦi

2 =
1
2λiΦi

2.

Proof. It is immediate from the definition that L∗

1,gΦ
i
1 = Φi

1, L∗

1,gΦ
i
2 = Φi

2, and R∗

1,g−1 L∗

2,gΦ
i
2 = Φi

2. We use
Eq. (4.c) to see:

{R∗

1,g−1 L∗

2,gΦ
i
1}(u, v) =

∑
jk

ξi j (gv)ξ jk(g−1)φk
L(u)⊕ 0

=

∑
jkl

ξil(v)ξl j (g)ξ jk(g−1)φk
L(u)⊕ 0

=

∑
k

ξik(v)φ
k
L(u)⊕ 0 = Φi

1(u, v).

Thus Φi
1 ∈ Λ̃1(G × G) and Φi

2 ∈ Λ̃1(G × G). Because Φi
1(1, 1) = φi

L(1) ⊕ 0 and because Φi
2(1, 1) = 0 ⊕ φi

L(1),
Assertion (1) now follows from Assertion (2) of Lemma 4.1. We dualize Eqs. (2.a) and (2.b) to see that

{m∗φi
L}(1, 1) = φi

L(1)⊕ φi
L(1) = {Φi

1 + Φi
2}(1, 1).

The identity of Assertion (2) of Lemma 4.2 now follows from Assertion (1) of Lemma 4.2 and from Assertion (3) of
Lemma 4.1.

Suppose φ ∈ Λ1
L(G). Then δGφ ∈ Λ0

L(G) is left invariant and hence δGφ = c is constant. Since dc = 0,

c2 vol(G) = (δGφ, δGφ)L2(G) = (φ, dGδGφ)L2(Λ1G) = 0.

Similarly if Φ ∈ Λ̃1(G × G), then δG×GΦ ∈ Λ̃0(G × G) is invariant under the transitive group action A defined
above. Consequently δG×GΦ = C constant and again

C2 vol(G × G) = (δG×GΦ, δG×GΦ)L2(G×G) = (Φ, dG×GδG×GΦ)L2Λ1(G×G) = 0.

Consequently one may express:

∆1
G{φi

L} = δGdG{φi
L} and ∆1

G×G{Φi
a} = δG×GdG×G{Φi

a} for a = 1, 2. (4.d)

Decompose

dG{φi
L} =

∑
j<k

Ci jkφ
j
L ∧ φk

L and δG{φ
j
L ∧ φk

L} =

∑
i

Di jkφ
i
L .

We compute:

Di jkvol(G) = (δG{φ
j
L ∧ φk

L}, φi
L)L2(Λ1G) = (φ

j
L ∧ φk

L , dφi
L)L2(Λ2G)

= Ci jkvol(G).

Consequently Di jk = Ci jk . Eqs. (4.b) and (4.d) yield:

∑
j<k,l

Cl jkCi jkφ
l
L = δG

{∑
j<k

Ci jkφ
j
L ∧ φk

L

}
= δGdG{φi

L} = ∆1
G{φi

L} = λiφ
i
L

and consequently∑
j<k

Cl jkCi jk = λiδ
il . (4.e)
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Let σ2(g1, g2) = g2 denote projection on the second factor. Since Φi
2 = σ ∗

2 φ
i
L and since Φi

1 + Φi
2 = m∗φi

L ,

dG×G{Φi
2} =

∑
j<k

Ci jkΦ
j
2 ∧ Φk

2 ,

dG×G{Φi
1 + Φi

2} =

∑
j<k

Ci jk(Φ
j
1 + Φ j

2 ) ∧ (Φk
1 + Φk

2 ),

dG×G{Φi
1} = dG×G{Φi

1 + Φi
2} − dG×G{Φi

2}

=

∑
j<k

Ci jk

{
Φ j

1 ∧ Φk
1 + Φ j

1 ∧ Φk
2 + Φ j

2 ∧ Φk
1

}
.

(4.f)

We expand δG×G{Φ j
2 ∧ Φk

2 } =
∑

i {D1,i jkΦi
1 + D2,i jkΦi

2}. Then, taking into account the normalizing factor of 2 in
Eq. (1.a) which dually yields a factor of 1

2 on the inner product for Λ1(G × G) and a factor of 1
4 on the inner product

for Λ2(G × G), one has:

1
2

D1,i jkvol(G × G) = (δG×G{Φ j
2 ∧ Φk

2 },Φi
1)L2(Λ1(G×G))

= (Φ j
2 ∧ Φk

2 , dG×G{Φi
1})L2(Λ2(G×G)) = 0,

1
2

D2,i jkvol(G × G) = (δG×G{Φ j
2 ∧ Φk

2 },Φi
2)L2(Λ1(G×G))

= (Φ j
2 ∧ Φk

2 , dG×G{Φi
2})L2(Λ2(G×G)) =

1
4

Ci jkvol(G × G).

This shows that

D1,i jk = 0 and D2,i jk =
1
2

Ci jk . (4.g)

Eqs. (4.d)–(4.g) yield:

∆G×G(Φi
2) = δG×GdG×G{Φi

2} =
1
2

∑
l, j<k

Cl jkCi jkΦl
2 =

1
2
λiΦi

2.

Similarly

δG×G{Φ j
1 ∧ Φk

1 } = δG×G{Φ j
2 ∧ Φk

1 } = δG×G{Φ j
1 ∧ Φk

2 } =
1
2

∑
l

Cl jkΦl
1

and thus ∆1
G×G{Φi

1} =
3
2λiΦi

1. �

5. Eigenforms whose pull-back has many non-zero Fourier coefficients

Let S3 be the unit sphere in the quaternions H = R4; this is a compact connected Lie group and the standard round
metric is the only bi-invariant metric on S3 modulo rescaling. Fix

0 6= f ∈ Eλ0(∆
0
S3)

with λ0 6= 0. Since the first cohomology group of S3 is trivial, there are no non-trivial harmonic 1-forms on S3. Thus
we may choose

0 6= φ ∈ Λ1
L(S

3) ∩ Eλ1(∆
1
S3)

for some λ1 > 0; we refer to [4,10] for additional details concerning the spectral geometry of S3; S3 could be replaced
by any non-Abelian compact connected Lie group in this construction.

We first prove Theorem 1.4 in the special case that p = 1. Suppose that µ0 = 2k. Choose real numbers
0 < t1 < · · · < tk < 1. Choose s1 > · · · > sk > 1 so

sαλ0 + tαλ1 = λ0 + λ1 for 1 ≤ α ≤ k.
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Let Gα be S3 with the rescaled metric ds2
Gα

:= t−1
α ds2

S3 and let φα = φ ∈ Λ1
L(Gα). Let Ḡα be S3 with the rescaled

metric ds2
Ḡα

:= s−1
α ds2

S3 and let fα = f ∈ C∞(Ḡα). After taking into account the effect of the rescaling, we have

fα ∈ Esαλ0(∆
0
Ḡα
), d fα ∈ Esαλ0(∆

1
Ḡα
), and φα ∈ Etαλ1(∆

1
Gα
).

Let G = G1 × · · · × Gk × Ḡ1 × · · · × Ḡk . Decompose m∗(φα) = Φα
1 + Φα

2 . Let ψ :=
∑
α fαφα . As the structures

decouple, one has:

∆1
G{ψ} =

∑
α

(sαλ0 + tαλ1) fαφα = (λ0 + λ1)ψ.

We can apply Theorem 1.3 to see

∆1
G×Gm∗ψ =

∑
α

{(
sαλ0 +

3
2

tαλ1

)
m∗ fα · Φα

1 +

(
sαλ0 +

1
2

tαλ1

)
m∗ fα · Φα

2

}
=

∑
α

{(
λ0 + λ1 +

1
2

tαλ1

)
m∗ fα · Φα

1 +

(
λ0 + λ1 −

1
2

tαλ1

)
m∗ fα · Φα

2

}
.

The computations performed above then yield ψ ∈ Eλ0+λ1(∆
1
G). Furthermore:

m∗( fα)Φα
1 ∈ E

λ0+λ1+
1
2 tαλ1

(∆1
G×G),

m∗( fα)Φα
2 ∈ E

λ0+λ1−
1
2 tαλ1

(∆1
G×G).

Since 0 < t1 < · · · < tk , m∗ψ has a Fourier decomposition which involves 2k = µ0 distinct eigenvalues. This
establishes Theorem 1.4 if p = 1 and if µ0 is even.

If µ0 = 2k + 1 is odd, we choose s0 so s0λ0 = λ0 + λ1. Then f0 ∈ Eλ1+λ2(∆
0
Ḡ0
). We apply the construction

described above to G = G1 × · · · × Gk × Ḡ0 × · · · × Ḡk and to ψ = d f0 + f1φ
1

+ · · · + fkφ
k ; the latter factors

are not present if µ0 = 1. Since m∗d f0 ∈ Eλ0+λ1(∆
1
G×G), there are 2k + 1 distinct eigenvalues which are involved

in the Fourier decomposition of ψ . This completes the proof of Theorem 1.4 if p = 1. We take the product of G with
circles S1 and replace φ by φ∧ dθ1 ∧ · · ·∧ dθp, where θβ is the usual periodic parameter on S1, to complete the proof
if p ≥ 1. �

6. Harmonic forms

Before beginning the proof of Theorem 1.5, we must establish some technical results. Let gL be the Lie algebra of
left invariant vector fields on G. The following results are well known; we sketch the proofs briefly:

Lemma 6.1. Let ds2
G be a bi-invariant metric on a compact connected Lie group G.

(1) If θ ∈ E0(∆n
G), then θ is bi-invariant.

(2) If η is a bi-invariant vector field, then ∇η = 0.
(3) Let θ ∈ Λ1

L(G). If dθ = 0, then ∇θ = 0.
(4) If Θ ∈ Λn(E0(∆1

G)), then ∇Θ = 0 and Θ ∈ E0(∆n
G).

Proof. The Hodge–DeRham theorem provides a natural identification of E0(∆n
G) with the cohomology group

Hn(G; C). In particular, this identification is compatible with the action of L∗
g and R∗

g . Since G is connected, L∗
g

and R∗
g act trivially on Hn(G; C) and hence on E0(∆n

G). Assertion (1) follows.
To prove Assertion (2), we use well known facts concerning bi-invariant metrics on Lie groups; see, for

example, [9]. Let exp(tξ) be the integral curve through the identity for ξ ∈ gL(G). Let η be bi-invariant. Assertion
(2) follows as:

∇ξη =
1
2
[ξ, η] =

1
2
∂t

{
(Lexp(tξ))∗(Rexp(−tξ))∗η

}
|t=0 = ∂tη|t=0 = 0.

Let θ ∈ Λ1
L(G) with dθ = 0. Since δθ is left invariant, δθ = c is constant. Since ∆0

Gc = 0, δθ = 0. Thus θ is
harmonic and hence bi-invariant. We use the metric to raise and lower indices and identify the tangent and cotangent
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spaces. Let η be the corresponding dual bi-invariant vector field. By Assertion (2), η is parallel. Thus, dually, θ is
parallel. This proves Assertion (3).

Let Θ ∈ Λn(E0(∆1
G)). Then there are constants aI and harmonic 1-forms θ i

L so

Θ =

∑
|I |=n

aI θ
i1
L ∧ · · · ∧ θ

in
L .

By assertion (3), ∇θ i
L = 0. Consequently ∇Θ = 0. On the other hand, one has

d + δ =

∑
i

{ext(ei )− int(ei )}∇ei

where {ei } and {ei
} are dual orthonormal frames for T G and T ∗G and where ext(·) and int(·) denote exterior and

interior multiplication. Thus parallel forms are necessarily harmonic. Assertion (4) follows. �

We distinguish the two factors in the product to decompose

Λn(G × G) = ⊕
p+q=n

Λp(G1)⊗ Λq(G2).

We let πp,q denote orthogonal projection on the various components. The Künneth formula shows

Hn(G × G; C) = ⊕
p+q=n

H p(G1; C)⊗ Hq(G2; C)

and, as we have taken a product metric on G × G, we have a corresponding decomposition in the geometric context:

C∞(Λn(G × G)) = ⊕
p+q=n

C∞
{Λp(G1)⊗ Λq(G2)},

∆n
G×G = ⊕

p+q=n
{∆p

G1
⊗ id + id ⊗∆q

G2
},

E0(∆n
G×G) = ⊕

p+q=n
{E0(∆

p
G1
)⊗ E0(∆

q
G2
)}.

Assertion (1) of Theorem 1.5 follows from Lemma 6.1. To prove Assertion (2) of Theorem 1.5, suppose

φ =

∑
|I |=n

aI θ
i1 ∧ · · · ∧ θ in ∈ Λn(E0(∆1

G)) for θ j
∈ E0(∆1

G).

As θ j is bi-invariant, θ j
⊕ θ j

∈ Λ̃1(G × G). Since m∗θ(1, 1) = θ j (1, 1)⊕ θ j (1, 1), m∗θ j
= θ j

⊕ θ j . As dθ j
= 0,

dm∗θ j
= m∗dθ j

= 0. Thus m∗θ j
∈ E0(∆1

G×G) so m∗φ ∈ Λn(E0(∆1
G×G)) is harmonic.

Conversely suppose that m∗φ ∈ E0(∆n
G×G). We then have π0,nm∗φ is harmonic. Since π0,nm∗φ = σ ∗

2 φ = 0 ⊕ φ,
φ is harmonic and hence bi-invariant. Decompose φ =

∑
|I |=n aIφ

I
L as a sum of left invariant n-forms where the

coefficients aI are constant. As m∗φ is harmonic, m∗φ is left invariant and decomposes in the form:

m∗φ =

∑
0<i1<···<in<dim(G)

ai1...in (φ
i1
L ⊕ 0 + 0 ⊕ φ

i1
L ) ∧ · · · ∧ (φ

in
L ⊕ 0 + 0 ⊕ φ

in
L ).

Choose the indexing convention so {φ1, . . . , φk
} is an orthonormal basis for E0(∆1

G) and so {φk+1, . . . , φdim(G)
}

completes the set to an orthonormal basis for Λ1
L(G). We suppose that φ 6∈ Λn(φ1, . . . , φk) and argue for a

contradiction. Choose a minimal so ai1,...,ia , j1,..., jb 6= 0 where ia ≤ k and k < j1 < j2 < · · · < jb. By hypothesis
a < n so b ≥ 1. Let

φ0 := φ
i1
L ∧ · · · ∧ φ

ia
L ∧ φ

j2
L ∧ · · · ∧ φ

jb
L ,

φ := φ̃ ∧ φ0 + other terms

where the other terms do not involve the monomial φ0 and where 0 6= φ̃ 6∈ E0(∆1
G); φ̃ = int(φ0)φ ∈ Λ1

L(G). We may
then expand

π1,n−1m∗φ = (φ̃ ⊕ 0) ∧ (0 ⊕ φ0)+ other terms,
dπ1,n−1m∗φ = (dφ̃ ⊕ 0) ∧ (0 ⊕ φ0)+ other terms.



C. Dunn et al. / Journal of Geometry and Physics 57 (2007) 2065–2076 2075

Consequently dφ̃ = 0 since this is the only term of bi-degree (2, n − 1) multiplied by 0 ⊕ φ0; one then has
dφ̃ ⊕ 0 = int(0 ⊕ φ0)dm∗φ. By Lemma 6.1, φ̃ ∈ E0(∆1

G). The contradiction completes the proof of Assertion
(2). Assertion (3) is an immediate consequence of Assertion (2) since E0(∆1

G) = {0} if G is simply connected. �

7. Finite Fourier series for general left invariant metrics

Let ds2
G be a left invariant metric on a compact Lie group G and let ds2

G×G be a left invariant metric on G × G.
We impose no relationship between the two metrics; in particular, we do not assume that the multiplication map m is
a Riemannian submersion any more; it is an interesting question in its own right when this is possible and we shall
investigate this question in more detail in a subsequent paper.

We begin the proof of Theorem 1.6 with a technical result:

Lemma 7.1. Let G be a compact Lie group. Let H be left invariant subspace of L2(Λp(G)). Then there is a bi-
invariant subspace H1 ⊂ L2(Λp(G)) which contains H so that dim(H1) ≤

(
dim{G}

p

)
dim(H)2.

Proof. The lemma is immediate if dim(H) = ∞ so we may suppose H is finite dimensional. By decomposing
H = ⊕i ni Vρi into irreducible representations, we may assume without loss of generality that H = Vρ where Vρ is
an irreducible left representation space for G in the proof of Lemma 7.1. We apply the Peter–Weyl theorem and use
Eq. (3.a). Let

H p
ρ = ⊕

|I |=p
Hρ · Φ I

L =

(
dim{G}

p

)
dim(Vρ)Vρ .

Then H ⊂ H p
ρ . Since left and right multiplication commute, H p

ρ · Rg is isomorphic to H p
ρ for any g ∈ G. Since H p

ρ

contains all representations isomorphic to Vρ , H p
ρ · Rg = H p

ρ is right invariant as well. �

Let φ ∈ Eλ(∆
p
G) be an eigen-p-form. Apply Lemma 7.1 to choose a subspace H1 ⊂ L2(Λp(G)) which is left and

right invariant under the action of G, which contains Eλ(∆
p
G), and which satisfies:

dim(H1) ≤

(
dim{G}

p

)
dim{Eλ(∆

p
G)}

2.

Let m̃(a, b) = ab−1. Then m̃Lg1,g2 = Lg1 Rg−1
2

m̃. Consequently m̃∗ H1 is a finite dimensional subspace of

L2(Λp(G × G)) which invariant under left multiplication in the group. Apply Lemma 7.1 to choose a subspace
H2 ⊂ L2(G × G) which is left and right under the action of G × G, which contains m̃∗ H1, and which satisfies:

dim(H2) ≤

(
2 dim{G}

p

) (
dim{G}

p

)2

dim{Eλ(∆
p
G)}

4.

Set ψ(x, y) = (x, y−1). Then ψ∗ H2 is still bi-invariant and in particular is left invariant. Since m∗φ ∈ ψ∗ H2,
Lemma 3.1 can now be applied to show that

µ(m∗φ) ≤

(
2 dim{G}

p

)2 (
dim{G}

p

)2

dim{Eλ(∆
p
G)}

4.

Theorem 1.6 now follows. �
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