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Abstract

Let G be a compact connected Lie group which is equipped with a bi-invariant Riemannian metric. Let m(x, y) = xy be the
multiplication operator. We show the associated fibration m : G x G — G is a Riemannian submersion with totally geodesic fibers
and we study the spectral geometry of this submersion. We show that the pull-backs of eigenforms on the base have finite Fourier
series on the total space and we give examples where arbitrarily many Fourier coefficients can be non-zero. We give necessary and
sufficient conditions for the pull-back of a form on the base to be harmonic on the total space.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The spectral geometry of Riemannian manifolds has been studied extensively; compact Lie groups play a central
role in this investigation. For example, work of Schueth [13] shows that there are non-trivial isospectral families of left
invariant metrics on compact Lie groups, although any such family which includes a bi-invariant metric is necessarily
trivial; this work has been extended by Proctor [11]. Riemannian submersions of Lie groups with totally geodesic
fibers have been studied by Ranjan [12]. We refer the reader to [3] for a further discussion of the spectral geometry of
Riemannian submersions.

There are many instances in the physics literature where non-bijective canonical transformations (i.e. Riemannian
submersions) have been investigated. Boiteux [1] studied the Coulomb potential in two and three dimensions
and noted that “in quantum mechanics, those transformations connect operators with different spectra which as
such cannot be deduced from one another by unitary transformations”. Recent work by Kibler [7] discusses the
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Kustaanheimo—-Steiffel transformation in classical mechanics for regularizing the Kepler problem; this is a non-
bijective canonical transformation which is quadratic and based on the Hopf fibration. We also refer the reader to
Lambert and Kibler [8] for related work and for a more extensive review of the classical literature in this subject than
is possible here.

In this paper, we shall study the spectral geometry of the multiplication map m : G x G — G where G is a
compact Lie group. If we embed G in a matrix group, then m defines a non-bijective canonical transformation which
is quadratic. We shall adopt the following notational conventions. Let Aﬁ’,[ ‘= db + &d be the Laplace-Beltrami
operator acting on the space of smooth p forms C*°(A?”(M)) on a compact smooth closed Riemannian manifold M
of dimension m. We summarize briefly the following well known facts which we shall need, see, for example [2] for
further details. Denote the distinct eigenvalues and associated eigenspaces by:

Spec(AY) ={0=210 <A1 < - <hy <},
Ex(Ay) = {¢ € C¥U(M)) : Ay¢ = 1o

The spectral multiplicities dim{E, (A”M)} are all finite. Furthermore there is a complete orthonormal decomposition

LXAPM) = &  E(Ab).
AESpec(APM)

Let G be a compact connected Lie group which is equipped with a bi-invariant Riemannian metric dsé. Normalize
the product metric on G x G by taking

dsZ, c = 2(ds% @ ds2). (1.a)

The situation on O-forms is particularly simple; we shall show in Section 2 that the pull-back of an eigenfunction
is again an eigenfunction with the same eigenvalue:

Theorem 1.1. Let dsé be a bi-invariant metric on a compact Lie group G. Let ds%XG = 2(dsé ® dsé). Then the
multiplication map m : G x G — G is a Riemannian submersion with totally geodesic fibers and m*{E A(A%)} -
E)L(A%XG)'

Let ), be orthogonal projection on E A(A]’f,[). If ¢ € C®(AP(M)), let () be the number of eigenvalues A so that
¢ # 0; this is the number of distinct eigenvalues which are involved in the Fourier series decomposition of ¢. We
shall use the Peter—Weyl theorem in Section 3 to show that:

Theorem 1.2. Let dsé be a bi-invariant metric on a compact Lie group G. Let dséxG = 2(ds% @ dsé). If
¢ € Ex(AD), then () < (*9m(O)) dim(E, (A%))

The geometry of left invariant 1-forms plays a central role in our discussions. The following result will be
established in Section 4:

Theorem 1.3. Let dsé be a bi-invariant metric on a compact Lie group G. Let dséXG = 2(dsé ® dsé). Let
¢ € E)\(A%;) be left invariant. Then one may decompose m*¢p = & + Dy where 0 # &) € Eix(Aé;xG) and
2

0# & € Ey, (Ag,6)
Theorem 1.2 shows that the pull-back of an eigenform has a finite Fourier series. In Section 5, we will use

Theorem 1.3 to establish following result which shows that the number of eigenvalues involved in the Fourier
decomposition of m*¢ can be arbitrarily large:

Theorem 1.4. Let p > 1 and let pg € N be given. There exists a bi-invariant metric on a compact Lie group G, there
exists A, and there exists 0 # ¢ € E;L(Ag) so that u(m*¢) = wo.

The Hodge-DeRham theorem identifies the nth cohomology group H" (M; C) of M with the space of harmonic
n-forms Eo(4A",) if M is a compact Riemannian manifold. Thus the eigenvalue 0 has a particular significance. Let
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A(Eo(AlG)) be the subring generated over C by the harmonic 1-forms; one has that ¢ € A”(EO(AIG)) if and only if
one can express:

¢ = Z a1¢i1 Aos A d)in where a; € C and ¢i € EO(A%;).
|I|=n

Theorem 1.5. Let dsé be a bi-invariant metric on a compact Lie group G. Let dséxc = 2(dsé @ dsé). Assume G
connected.

(1) A"(Eo(Ag)) C Eo(AR).
(2) ¢ € A"(Eg(AL)) if and only if m*¢ € Eo(A%L, ).
(3) Let G be simply connected. If ¢ € Eo(Ay) forn > 0, m*¢ & Eo(AG . )-

One can consider more generally the situation where G and G x G are endowed with arbitrary left invariant
metrics dsé and dséx ¢ Where there is no a priori relation assumed between these metrics. The question of when this
is a Riemannian submersion is an interesting one and will be studied in more detail in a subsequent paper. For the
moment, however, we content ourselves in Section 7 by generalizing Theorem 1.2 to this setting:

Theorem 1.6. Let G and G x G be equipped with left invariant metrics ds%; and dsé>< cIfoek A(Af;), then

. 2, .. 2
Hm* ) < <2d”;{G}> (d‘mp{G}> dim{E; (AL}

We remark that this bound is much worse than the bound given in Theorem 1.2; at two different points in the proof
we shall need to pass from a left invariant subspace to a bi-invariant subspace and this greatly increases estimate on
the dimension.

2. The geometry of the multiplication map m

Let 7 : X — Y be a surjective smooth map where X and Y are compact Riemannian manifolds. We suppose that
7 is a submersion, i.e. that the map m, : Tx X — Ty,Y is surjective for every x € X, and let V (resp. H) be the
associated vertical (resp. horizontal) distribution:

V={eTX:mé&=0 and H =V,

We say that r is a Riemannian submersion if w, : Hy — T Y is an isometry Vx.
The following example is instructive. Let m (1, v) = u + v define a linear map from R?>" — R”. Take the standard
Euclidean metric on R”. We may identify 7, R>" = R>" and T yR" = R". Under this identification,

1 1 1 1
vesml ooz} e o))

We have m*(%é, %é) = &. Thus if £ is a unit vector in T,R", we need that (%S, %é) is a unit vector in T,R?". This
motivates the factor of 2 which appears in Eq. (1.a) since the ordinary Euclidean length of (%é , %E) would be % and
not 1. With this normalization, m becomes a Riemannian submersion.

More generally, let G be a Lie group which is equipped with a bi-invariant Riemannian metric dsé. Let
m(x,y) = xy be the multiplication operator from G x G — G. Let {el.L} (resp. {el.R }) be an orthonormal frame
of left (resp. right) invariant vector fields on G. We assume eiL H = eiR (1) = ¢; where 1 € G is the unit of the group
and where {e;} is an orthonormal basis for 77(G). Let exp be the exponential map in the group. Then the flows El.L
and EiR of these vector fields are:

=)

gl :(g.1) > gexpte)) and EF:(g.1) — exp(tes.
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The multiplication map m defines a smooth surjective map m : G x G — G. Consider the following curves in
G x G with initial position (g1, g2):

1 1
yighgz cf = <g1 exp <§t6i) , EXp <—§te;> gz) )
. L)oo (e
0; it —> | g1exp ztez , €Xp ztel 82

8082 1t — (expl(tei)g1, 82).

We may identify 7(G x G) = TG @ T G. Because mt""** : t — exp(te;)g182.

m {7578 (0)) = ef (m(g1. 82)).
Consequently m, is surjective so m is a submersion. As myigl’g2 : t — g1g is independent of ¢, one has
Vi = %(eiL, —el-R) € ker{m.}. It now follows that

1
V := ker{m.} = Span {Vi = E(eL _eiR)} )

i

(2.2)

1
H = ker{m,}" = Span {Hi = E(eiL, eiR } .

Let Lg and R, denote left and right multiplication in the group. As ¢; = H;,

Ma(g.g) VHi (81, 82)} = (Lg))x(Ryg,)xei- (2.b)

Since Lg, and R,, are isometries, it follows that {m.H;(g1, g2)} is an orthonormal basis for Ty, ., G. We have
defined dséxG = 2(dsé ® dsé). We show that m is a Riemannian submersion by computing:

1

(Hi, Hp)axe =27 [ ehe + (e efra ) =8y,
1

(Hi. V))oxc =27 { (e} ehe — (ef.efra | = 0.
1

(Vi Voxe =27 [eF. e + ef.efra | = o,

Fix h € G. The map T}, : (g1, &2) — (hgz_l, gl_lh) is an isometry G x G. Clearly Ty (g1, g2) = (g1, g2) if and
only if g1 = hg, !and g = gl_lh or equivalently if gjg> = h. Thus the fixed point set of T is m~!(h). Since the
fixed point set of an isometry consists of the disjoint union of totally geodesic submanifolds, the fibers of m, which
are connected submanifolds diffeomorphic to G, are totally geodesic. It now follows that the mean curvature covector
vanishes. Theorem 4.3.1 of [3] shows m*A% = A%X(;m*. This completes the proof of Theorem 1.1.

3. The Peter—Weyl theorem

We recall the classical Peter—Weyl theorem; for further details see, for example, [5,6]. Let G be a compact Lie
group which is equipped with a bi-invariant metric; assume the metric is normalized so G has unit volume. If p is a
smooth left representation of G on a finite dimensional complex vector space V, then by averaging an arbitrary inner
product on V over the group we can always choose an inner product on V which is preserved by p. Thus any such
representation is unitarizable. Let Irr(G) be the set of isomorphism classes of finite dimensional irreducible unitary
left representations of G. We can decompose any finite dimensional left representation space V as a direct sum of
irreducibles:

V= & n,V,;
pelr(G) poe

the multiplicities n, are independent of the particular decomposition chosen and are non-zero for only finitely many p.
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Let {e;} be an orthonormal basis for V, where p € Irr(G). We may expand p(g)e; = Y j Pij (g)e;; the functions
pij € C*°(G) are said to be the matrix coefficients of p. We let

H,:= Span {p;;} C L*(G).
1<i, j<dim(p)

It is easily verified that H, is invariant under both the left and right group action and that H, is independent of the
particular orthonormal basis chosen for V,; isomorphic representations determine the same space. Furthermore, as a
left representation space for G, H, is isomorphic to dim(p) copies of the original representation p.

If V is any finite dimensional subspace of L%(G) which is left invariant under G and which is abstractly isomorphic
to V,, as a representation space, then one has V C H,; to put it another way, H, contains all the left submodules of
L*(G) which are isomorphic to V,. Furthermore, we have a complete orthogonal direct sum decomposition

L*(G)= @& H,= @ dim(p)-V,.
pelr(G) pelr(G)

This means that {0;;}1<;, j<dim(p), pelir(G) 18 @ complete orthonormal basis for L%(G).
More generally, let {¢; } be an orthonormal basis for the space of left invariant 1-forms. If one has that / = {1 <

i1 <--- <ip < dim(G)} is a multi-index, let @i = ¢>2‘ Ao A ¢IL”; the @,{ are an orthonormal basis for the space
of left invariant p-forms and as a left representation space for G one has:

dim{G )
L*(AP(G)) = @ H,®d = @ ( { }> dim(V,)V,. (3.2)
pelr(G),|I|1=p pelrr(G) p

The subspace H) := @;=p H, - ®! is a bi-invariant G submodule of L?(A”(G)) which contain every left
subrepresentation of G on L?(A”(G)) isomorphic to Vp.

Let m; be orthogonal projection from L?(AP(G)) to E, (Af;) and let (@) be the number of eigenvalues A so
7, (¢) # 0. We prepare for the proof of Theorem 1.2 by establishing:

Lemma 3.1. Let H C L?*(AP(G)) be invariant under the action of Ly forall g € G. If ¢ € H, then u(¢) <
dim{G}\ 1
( ! )dlm{H}.
Proof. Clearly 7y H is non-trivial if and only if there exists p € Irr(G) so that the multiplicities satisfy:
ng(p) >0 and ”EA(AZ)(IO) > 0.

Note that only a finite number of representations appear in H and only a finite number of eigenspaces involve any
given representation. By Eq. (3.a),

1(g) < > >
PElt(G)np (H)F0 | ainy(Ex(AL))#0

< ¥ {(dim{G})dim{vp}} < <dim{G})dim{H}. 0
pElr(GYin, (H)£0 p p

We can now establish Theorem 1.2. It is convenient to introduce m(g, h) = gh_l. Let H = E)L(Ag). Since the
metric is bi-invariant, the Laplacian and hence the eigenspaces are preserved by both left and right multiplication. Let
H := m*H. We compute:

LS 7% (a1, a2} = rii(gar, hay) = gara; 'h™" = LY RY i(ar, az),

(LR O ym® = i (R )™ (L)
Since H is invariant under both the left and right actions of G, H is invariant under the left action of G x G. We
replace the group in question by G x G and apply Lemma 3.1 to estimate u(m*¢). Since the metric on G x G is
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bi-invariant, ¥ (x, y) := (x, y~!) is an isometry of G x G. We have
atay = m(ay, a2) = ar(a; )~ = m(Y(ar, a2))

and thus m* = y¥*m™*. Consequently u(m*¢) = u(y*m*¢) = u(m*¢). O
4. Left invariant 1-forms

Let AIZ (G) be the finite dimensional vector space of left invariant p-forms on G. Define the left and right actions
of G on G x G by:

Ll,g:(-xay)_)(ngy)? Lz,g:(xﬂy)_)(-xvgy)v

(4.a)
Rig:(x,y) — (xg, ), Ry :(x,y) — (x,y8).
Consider the following subspaces:

AP(G x G) = {0 € C®(AP(G x G)) : Ly 0 =06,R L} 0 =0VgeG}

Lemma 4.1. Adopt the notation established above. Then:

(1) dxG{AP(G x G)} C AP*H(G x G), 8Gx{APT (G x G)} C AP(G x G), AL AAP(G x G)} C AP(G x G),
and AP (G x G) A A1(G x G) C AP*4(G x G).

(2) The map 6 — 6(1) is an isomorphism from AP (G x G) to AP(G x G)(1).

(3) m*{A}(G)} C AP(G x G).

Proof. Assertion (1) follows since the maps of Eq. (4.a) are isometries and thus the pull-backs defined by these maps
commute with d, 8, A, and A. To prove Assertion (2), define an action A of G x G on G x G by setting:

Agh : (a,b) — (gah™", hb)
this is a fixed point free transitive isometric group action since

Agihi Agahy = Agigahihy-
This exhibits G x G as a homogeneous space. We have furthermore that:
m(ga, b) = gm(a, b), molLig=Lgom, m*LZ:L’f’gm*,
m(ag~", gb) = m(a, b), moLygRy 1 =m, RTg,lL;gm* =m®.
Suppose that ¢ € A7 (G). Then L3¢ = ¢ for all g. Consequently
Ly m*¢ =m"L,¢ =m"¢ and RT’g_.L;gm*qb =m*¢.
Assertion (3) follows. [

Fix an orthonormal frame {(;’)2} for AIL(G) so that

AG{BL) = Ny (4.b)

Since right and left multiplication commute, right multiplication preserves A i (G). Thus we may decompose
RipL = &i(2)ey. (4.0)
J

Since Ry R = Rpg and since Ry = id, we have
§ij(©E&jk(h) = &ix(hg) and §&;(1) = §;;.
We may decompose A'(G x G) = A'(G) ® A'(G). Define

@{(u,v)=25ij(v)¢{(u)@o and  Pi(u, v) = 0@ ¢! (v).
j
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Lemma 4.2. Adopt the notation established above.

(1) {P}, &L} is a basis for 11(G x G).

(2) m*¢, = &i + .

(3) AL i =358 and AL, P, = 1x; B

Proof. It is immediate from the definition that LT’g @i = @’i, LT,g @é = (Pé, and R* _IL;g @é = (ﬁé. We use

Lg
Eq. (4.c) to see:
(R} L5, P}, v) = ) &ij(g)Ejn(g~ ey () © O
Jjk
=Y E&E; (&g eE ) 0
Jjki

=Y E)Pf () &0 = &} (u, v).
k

Thus ¢/ € A'(G x G) and &, € A'(G x G). Because ¢ (1, 1) = ¢! (1) ® 0 and because Pi(1, 1) = 0 & ¢’ (1),
Assertion (1) now follows from Assertion (2) of Lemma 4.1. We dualize Egs. (2.a) and (2.b) to see that

(m*¢i }(1, 1) = ¢ (1) ® @i (1) = (&} + BL)(1, 1).

The identity of Assertion (2) of Lemma 4.2 now follows from Assertion (1) of Lemma 4.2 and from Assertion (3) of
Lemma 4.1.
Suppose ¢ € AIL(G). Then §g¢ € Ag(G) is left invariant and hence §G¢ = c is constant. Since dc = 0,

2 vol(G) = (86, 868) 12y = (@, dcS6d) 2116y = 0.

Similarly if ¢ € /Nll(G X G), then dgxg P € ]10(G x G) is invariant under the transitive group action A defined
above. Consequently 6gxg ¢ = C constant and again

C2 VO](G X G) = ((SGXG @, anG @)LZ(GXG) = (@, deG8GxG ¢)L2A1(G><G) = 0.

Consequently one may express:

AL(DL ) = 8gdgidt) and AL, (P} = dgxcdexc{P) fora=1,2. (4.d)
Decompose
da{ei} =) Cipdy ndf and Scio] Adf} = Dijcd).
j<k i
We compute:

Dijxvol(G) = (3] APE). &) 12a1g) = (@) A SE.ddL) 12 )
= Cijrvol(G).

Consequently D;jx = C;jx. Egs. (4.b) and (4.d) yield:

Z CijkCijkds, = 8 {Z Cijk¢£ A ¢f} =Sgdgid:) = ALI#E) = Al

j<kil i<k

and consequently

> ClikCijr = 1is™. (4.
j<k



2072 C. Dunn et al. / Journal of Geometry and Physics 57 (2007) 2065-2076

Let 02(g1, g2) = g2 denote projection on the second factor. Since & = az*qﬁ}; and since @{ + &l = m*¢2,
dGxc{ Py} =) Ciju®) A B,
j<k
doxG{®, + &) = Zcijk(fﬁ{ + @;) A(DF + 85,
Jj<k 4.1)
dGxc{P1} = doxcl{®| + D5} — doxc{ Py}
> Cie | @] A 0k + @) A 25+ o) 1 2f].
j<k

We expand 86 x G 515'2/ A @’2‘} = Zi{DLijk @{ + D2jjk 5155}. Then, taking into account the normalizing factor of 2 in
Eq. (1.a) which dually yields a factor of % on the inner product for A'(G x G) and a factor of % on the inner product
for A2(G x G), one has:

Boxal® A D5}, P 1241 (Gx6))

= (D3 A D5, doxc{ D) 22 x6y) = 0,

1
le,ijkVOI(G X G)

1 ; .
§D2’l‘jkV01(G X G) = ((SGXG{Qé AN @]2(}, Qé)LZ(AI(GXG))

) . 1
(@é VAN @/2(’ dGXG{@lz})LZ(Az(GXG)) = ZCUkVOl(G X G)
This shows that
1
Diijk=0 and Dj;jx = zcijk- (4.2)

Egs. (4.d)-(4.g) yield:

. . 1 1 .
AGxG(95) = 86xGdexG{Ph) = 5 Y CinCiji By = =1 B,
2l,j<k 2

Similarly
. . . 1
36xG1P] A P} =8x0{Py A O} =661 A D5} =53 Cljx |
I
and thus AL (&)} = 3x, 0. O
5. Eigenforms whose pull-back has many non-zero Fourier coefficients

Let S be the unit sphere in the quaternions H = R*; this is a compact connected Lie group and the standard round
metric is the only bi-invariant metric on $3 modulo rescaling. Fix

0% f € Ex(AY)

with 1o % 0. Since the first cohomology group of S is trivial, there are no non-trivial harmonic 1-forms on S3. Thus
we may choose

0 ¢ € Ap(S?) N Ey(A)

for some A1 > 0; we refer to [4,10] for additional details concerning the spectral geometry of S3; §3 could be replaced
by any non-Abelian compact connected Lie group in this construction.

We first prove Theorem 1.4 in the special case that p = 1. Suppose that o = 2k. Choose real numbers
O<tyj<---<ty <1.Chooses; > ---> s > 1s0

Sgrho +tuh1 =Xo+ X2 forl <o <k.
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Let G, be 3 with the rescaled metric dséa =1, 1dsé3 and let ¢* = ¢ € AIL(GQ). Let G, be S3 with the rescaled
metric dSZGEY =5, 1 dsé3 andlet f, = f € COO(GD,). After taking into account the effect of the rescaling, we have

fa € Espng(Ag ) dfa € Esag(Ag ), and ¢ € Eyz, (Ag,)-

Let G =Gy X --- X Gg X G| X --- x Gy. Decompose m*(¢p*) = OF + Y. Let ¢ =), fu9”. As the structures
decouple, one has:

AGWY = (sah0 + tah1) fad® = (ho + 1) Y.

o

We can apply Theorem 1.3 to see

3 1
Aé}xGm*l// = Z { <Sot)\0 + Ela)ﬂ) m*foc : @? + <Sot)\0 + Eta)ﬂ) m*fot ’ ég}
o

1 . o 1 x o
=2 1ot h Staky ) fa - O 4 (R0 +ha = Stada " fu - 951
o
The computations performed above then yield ¢ € E; 43, (A IG). Furthermore:
m*(fo) P} € EAO+/\1+%zaA1(AlGxG)»
m*(fa) @3 € E)L()«H\lf%ta)\l(AlGxG)'

Since 0 < #; < -+ < t, m*y has a Fourier decomposition which involves 2k = pu distinct eigenvalues. This
establishes Theorem 1.4 if p = 1 and if p is even.
If o = 2k + 1 is odd, we choose sg so soAg = Ao + A1. Then fy € E/\1+A2(A(()';O)' We apply the construction

described above to G = G| X --- x Gy X Gg X --- x Gy and to ¥ = dfy + fip! +--- + fk¢k; the latter factors
are not present if g = 1. Since m*dfy € Ej 41, (AlGxG), there are 2k + 1 distinct eigenvalues which are involved
in the Fourier decomposition of ¥. This completes the proof of Theorem 1.4 if p = 1. We take the product of G with
circles S and replace ¢ by ¢ AdO; A --- A dO »» where 0 is the usual periodic parameter on S1, to complete the proof
ifp>1. 0O

6. Harmonic forms

Before beginning the proof of Theorem 1.5, we must establish some technical results. Let g;, be the Lie algebra of
left invariant vector fields on G. The following results are well known; we sketch the proofs briefly:

Lemma 6.1. Let dsé be a bi-invariant metric on a compact connected Lie group G.
(1) If 0 € Eo(AY,), then 0 is bi-invariant.

(2) If nis a bi-invariant vector field, then Vi = 0.

(3) Let6 € A]L(G). If d6 =0, then VO = 0.

@ Ifoe A"(EO(AIG)), then VO = 0and O € Eo(Ay).

Proof. The Hodge-DeRham theorem provides a natural identification of Eo(Af;) with the cohomology group
H"(G; C). In particular, this identification is compatible with the action of L; and R;. Since G is connected, L;
and R; act trivially on H"(G; C) and hence on Eo(Ag;). Assertion (1) follows.

To prove Assertion (2), we use well known facts concerning bi-invariant metrics on Lie groups; see, for
example, [9]. Let exp(t£€) be the integral curve through the identity for & € g7 (G). Let n be bi-invariant. Assertion
(2) follows as:

1 1
VSU = E[és nl = Eat {(Lexp(té))*(Rexp(fté))*rl} lr-=0 = 9nli=0 = 0.

LetO € AlL(G) with d6 = 0. Since §6 is left invariant, §6 = c is constant. Since A%c = 0,86 = 0. Thus 9 is
harmonic and hence bi-invariant. We use the metric to raise and lower indices and identify the tangent and cotangent
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spaces. Let n be the corresponding dual bi-invariant vector field. By Assertion (2), 1 is parallel. Thus, dually, 6 is
parallel. This proves Assertion (3). ‘
Let © € A" (EO(AE)). Then there are constants a; and harmonic 1-forms 6; so

= ll DY in
6 = Z arf; A--- NG
1=n

By assertion (3), V@i = 0. Consequently VO = 0. On the other hand, one has
d+6=" {ext(e') —int(e")}V,,
i

where {e;} and {ei} are dual orthonormal frames for TG and T*G and where ext(-) and int(-) denote exterior and
interior multiplication. Thus parallel forms are necessarily harmonic. Assertion (4) follows. O

We distinguish the two factors in the product to decompose

AMGxG) = @& AP(G)) ® A1(Gy).
ptq=n

We let 7, , denote orthogonal projection on the various components. The Kiinneth formula shows

H"(GxG,;C)= & HP(G;;C)® H1(Gy; C)
pt+q=n

and, as we have taken a product metric on G x G, we have a corresponding decomposition in the geometric context:

CUN(GCxG)= @ CTA(G)) @ A (G},
p+q=n
Apvg = & {Ag ®id+id®AF ),
pt+q=n
Eg(A%,6) = @® {(Eo(Ag) ® Eo(A7)).
ptq=n
Assertion (1) of Theorem 1.5 follows from Lemma 6.1. To prove Assertion (2) of Theorem 1.5, suppose
=Y af' A A0 € AN(E)(Ag))  for0) € Eg(Ag).
| |=n
As 6/ is bi-invariant, 6/ @ 6/ € ]_11(G x G). Since m*0(1, 1) =0/ (1, D ® 0 (1, 1), m*0/ =6/ @ 6/. Asdo’ =0,
dm*0’ = m*d6’/ = 0. Thus m*6/ € EO(AIGXG) som*¢p € A"(Eo(AlGxG)) is harmonic.
Conversely suppose that m*¢ € Eo(AY, ;). We then have ¢ ,m*@ is harmonic. Since o ,m*¢ = ;¢ = 0D ¢,

¢ is harmonic and hence bi-invariant. Decompose ¢ = ZI I]=n @1 q‘)i as a sum of left invariant n-forms where the
coefficients a; are constant. As m*¢ is harmonic, m*¢ is left invariant and decomposes in the form:

m¢ = Yo (@ ®0+0B G A A WG] BO+0D ).

O<ij<--<ip<dim(G)

Choose the indexing convention so {¢1, ey ¢k} is an orthonormal basis for EO(AE;) and so {¢k+1, e, ¢dim(G)}
completes the set to an orthonormal basis for AIL(G). We suppose that ¢ ¢ A"(¢', ..., #*) and argue for a
contradiction. Choose a minimal so a;, .. i, ji....j» 7 0 where i, < kandk < j; < j» < --- < jp. By hypothesis

a<nsob>1.Let
G0 =@ A AP AP A AP
@ = ¢ A ¢ + other terms

where the other terms do not involve the monomial ¢ and where 0 # ¢ & Eo(A IG); ¢ = int(¢o)¢ € A IL (G). We may
then expand

Tip_1m*¢ = (¢ @ 0) A (0 @® o) + other terms,

A1 p-1m”¢ = (dp & 0) A (0 & go) + other terms.
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Consequently d¢ = 0 since this is the only term of bi-degree (2,n — 1) multiplied by 0 & ¢o; one then has
dp & 0 = int(0 & ¢pog)dm™¢. By Lemma 6.1, ¢ € EO(AIG). The contradiction completes the proof of Assertion
(2). Assertion (3) is an immediate consequence of Assertion (2) since Eo(Alc) = {0} if G is simply connected. [l

7. Finite Fourier series for general left invariant metrics

Let dsé be a left invariant metric on a compact Lie group G and let dséxG be a left invariant metric on G x G.
We impose no relationship between the two metrics; in particular, we do not assume that the multiplication map m is
a Riemannian submersion any more; it is an interesting question in its own right when this is possible and we shall
investigate this question in more detail in a subsequent paper.

We begin the proof of Theorem 1.6 with a technical result:

Lemma 7.1. Let G be a compact Lie group. Let H be left invariant subspace of L*(AP(G)). Then there is a bi-
invariant subspace Hy C LZ(A”(G)) which contains H so that dim(H{) < (din;{G}> dim(H)2.

Proof. The lemma is immediate if dim(H) = oo so we may suppose H is finite dimensional. By decomposing
H = ®; n;V,, into irreducible representations, we may assume without loss of generality that H = V,, where V,, is
an irreducible left representation space for G in the proof of Lemma 7.1. We apply the Peter—Weyl theorem and use
Eq. (3.a). Let

dim{G} ..
H'= & H, & = ( )dlm(vp)vp.
11=p p

Then H C H,‘f . Since left and right multiplication commute, H,‘f - R, is isomorphic to Hé’ for any g € G. Since Hg
contains all representations isomorphic to V,,, H ;:’ "Ry = Hf; is right invariant as well. [J

Leto € EA(AZ) be an eigen- p-form. Apply Lemma 7.1 to choose a subspace H; C L?(A”(G)) which is left and
right invariant under the action of G, which contains E A(Af;), and which satisfies:

dim(H)) < (din;{G}> dim{E (AL))2.

Let n(a,b) = ab~!. Then Ly o = Ly Rg_|n~1. Consequently m*H; is a finite dimensional subspace of
2

L%(AP(G x G)) which invariant under left multiplication in the group. Apply Lemma 7.1 to choose a subspace
H, C L2(G x G) which is left and right under the action of G x G, which contains m* Hy, and which satisfies:

dim(Hy) < <2dlr;{G}) <dm;{G}> dim{E; (A%)}.

Set ¥ (x,y) = (x,y~!). Then y¥*H, is still bi-invariant and in particular is left invariant. Since m*¢ € *H,
Lemma 3.1 can now be applied to show that

. 2 . 2
) < (2d1r;1{G}) <d1n;{G}> dim{E, (A7)}

Theorem 1.6 now follows. [
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